Found an issue with the book? Report it on Github.
In the previous section, we learned how to reference types defined in other packages. This spares the developer from having to constantly define things in their local model. Instead, they can place definitions in packages and then reference those packages.
However, references with long fully qualified names can be tedious to
type over and over again. For that reason, Modelica includes an
import
statement that allows us to use a definition as if it were
defined locally.
Recall again, this example from a previous discussion on Physical Types:
within ModelicaByExample.BasicEquations.CoolingExample;
model NewtonCoolingWithTypes "Cooling example with physical types"
// Types
type Temperature=Real(unit="K", min=0);
type ConvectionCoefficient=Real(unit="W/(m2.K)", min=0);
type Area=Real(unit="m2", min=0);
type Mass=Real(unit="kg", min=0);
type SpecificHeat=Real(unit="J/(K.kg)", min=0);
// Parameters
parameter Temperature T_inf=298.15 "Ambient temperature";
parameter Temperature T0=363.15 "Initial temperature";
parameter ConvectionCoefficient h=0.7 "Convective cooling coefficient";
parameter Area A=1.0 "Surface area";
parameter Mass m=0.1 "Mass of thermal capacitance";
parameter SpecificHeat c_p=1.2 "Specific heat";
// Variables
Temperature T "Temperature";
initial equation
T = T0 "Specify initial value for T";
equation
m*c_p*der(T) = h*A*(T_inf-T) "Newton's law of cooling";
end NewtonCoolingWithTypes;
The previous section described how we could avoid defining these types
locally by using types from the Modelica Standard Library. But we can also use the
import
command to import those types from the Modelica Standard
Library once and then use them without having to specify their fully
qualified names. The resulting code would look something like:
within ModelicaByExample.PackageExamples;
model NewtonCooling
"Cooling example importing physical types from the Modelica Standard Library"
import Modelica.SIunits.Temperature;
import Modelica.SIunits.Mass;
import Modelica.SIunits.Area;
import ConvectionCoefficient = Modelica.SIunits.CoefficientOfHeatTransfer;
import SpecificHeat = Modelica.SIunits.SpecificHeatCapacity;
// Parameters
parameter Temperature T_inf=300.0 "Ambient temperature";
parameter Temperature T0=280.0 "Initial temperature";
parameter ConvectionCoefficient h=0.7 "Convective cooling coefficient";
parameter Area A=1.0 "Surface area";
parameter Mass m=0.1 "Mass of thermal capacitance";
parameter SpecificHeat c_p=1.2 "Specific heat";
// Variables
Temperature T "Temperature";
initial equation
T = T0 "Specify initial value for T";
equation
m*c_p*der(T) = h*A*(T_inf-T) "Newton's law of cooling";
end NewtonCooling;
Here we have replaced the type definitions with import
statements.
Note how the highlighted lines are identical to the previous code.
Let’s look at two of these import statements more closely to
understand what effect they have on the model. Let’s start with the
following import statement:
import Modelica.SIunits.Temperature;
This imports the type Modelica.SIunits.Temperature
into the
current model. By default, the name of this imported type will be the
last name in the fully qualified name, i.e., Temperature
. This
means that with this import
statement present, we can simply use
the type name Temperature
and that will automatically refer back
to Modelica.SIunits.Temperature
.
Now let’s look at another import
statement:
import ConvectionCoefficient = Modelica.SIunits.CoefficientOfHeatTransfer;
The syntax here is a little bit different. In this case, the type
that we are importing is
Modelica.SIunits.CoefficientOfHeatTransfer
. But instead of
creating a local type based on the last name in the fully qualified
name, i.e., CoefficientOfHeatTransfer
we are specifying that the
local type should be ConvectionCoefficient
. In this case, this
allows us to use the name we originally used in our earliest examples.
In this way, we can avoid refactoring any code that used the
previous name. Another reason for specifying an alternative name
(other than the default one that the Modelica compiler would normally
assign) would be to avoid name collision. Imagine we wished to import
two types from two different packages, e.g.,
import Modelica.SIunits.Temperature; // Celsius
import ImperialUnits.Temperature; // Fahrenheit
This would leave us two types both named Temperature
. By defining
an alternative name for the local alias, we could do something like
this:
import DegK = Modelica.SIunits.Temperature; // Kelvin
import DegR = ImperialUnits.Temperature; // Rankine
There is one last form of the import
statement worth discussing
which is the wildcard import statement. Importing units one unit at a
time can be tedious. The wildcard import allows us to import all
types from a given package at once. Recall the following earlier
example:
within ModelicaByExample.BasicEquations.RotationalSMD;
model SecondOrderSystem "A second order rotational system"
type Angle=Real(unit="rad");
type AngularVelocity=Real(unit="rad/s");
type Inertia=Real(unit="kg.m2");
type Stiffness=Real(unit="N.m/rad");
type Damping=Real(unit="N.m.s/rad");
parameter Inertia J1=0.4 "Moment of inertia for inertia 1";
parameter Inertia J2=1.0 "Moment of inertia for inertia 2";
parameter Stiffness c1=11 "Spring constant for spring 1";
parameter Stiffness c2=5 "Spring constant for spring 2";
parameter Damping d1=0.2 "Damping for damper 1";
parameter Damping d2=1.0 "Damping for damper 2";
Angle phi1 "Angle for inertia 1";
Angle phi2 "Angle for inertia 2";
AngularVelocity omega1 "Velocity of inertia 1";
AngularVelocity omega2 "Velocity of inertia 2";
initial equation
phi1 = 0;
phi2 = 1;
omega1 = 0;
omega2 = 0;
equation
// Equations for inertia 1
omega1 = der(phi1);
J1*der(omega1) = c1*(phi2-phi1)+d1*der(phi2-phi1);
// Equations for inertia 2
omega2 = der(phi2);
J2*der(omega2) = c1*(phi1-phi2)+d1*der(phi1-phi2)-c2*phi2-d2*der(phi2);
end SecondOrderSystem;
We could replace these type definitions with import statements, e.g.,
import Modelica.SIunits.Angle;
import Modelica.SIunits.AngularVelocity;
import Modelica.SIunits.Inertia;
import Stiffness = Modelica.SIunits.RotationalSpringConstant;
import Damping = Modelica.SIunits.RotationalDampingConstant;
However, the more types we bring in, the more import statements we need to add. Instead, we could write our model as follows:
within ModelicaByExample.PackageExamples;
model SecondOrderSystem
"A second order rotational system importing types from Modelica Standard Library"
import Modelica.SIunits.*;
parameter Angle phi1_init = 0;
parameter Angle phi2_init = 1;
parameter AngularVelocity omega1_init = 0;
parameter AngularVelocity omega2_init = 0;
parameter Inertia J1=0.4;
parameter Inertia J2=1.0;
parameter RotationalSpringConstant c1=11;
parameter RotationalSpringConstant c2=5;
parameter RotationalDampingConstant d1=0.2;
parameter RotationalDampingConstant d2=1.0;
Angle phi1;
Angle phi2;
AngularVelocity omega1;
AngularVelocity omega2;
initial equation
phi1 = phi1_init;
phi2 = phi2_init;
omega1 = omega1_init;
omega2 = omega2_init;
equation
omega1 = der(phi1);
omega2 = der(phi2);
J1*der(omega1) = c1*(phi2-phi1)+d1*der(phi2-phi1);
J2*der(omega2) = c1*(phi1-phi2)+d1*der(phi1-phi2)-c2*phi2-d2*der(phi2);
end SecondOrderSystem;
Note the highlighted import
statement. This single (wildcard)
import statement imports all definitions from Modelica.SIunits
into the current model. With wildcard imports, there is no option to
“rename” the types. They will have exactly the name locally as they
have in the named package.
Before using wildcard imports, be sure to read this caveat.
In this chapter, we’ve seen how import
statements can be used to
import types from other packages. As it turns out, import
statements are not always that useful. When models are being
developed within a graphical modeling environment, tools generally use
the least ambiguous and most explicit method for reference types:
using fully qualified names. After all, when using a graphical tool
the length of the name is not an issue because it doesn’t need to be
typed. This also avoids issues with name lookup, naming conflicts,
etc.